5,481,717

1

LOGIC PROGRAM COMPARISON METHOD
FOR VERIFYING A COMPUTER PROGRAM
IN RELATION TO A SYSTEM
SPECIFICATION

BACKGROUND OF THE INVENTION

The invention relates to a process for verifying the

correctness of an implementation by comparing it with a 10

system specification on which the implementation is based,
each represented by logic programs.

To build a system, such as a computer system which
consists of hardware and software, the specifications are first
prepared and, based on them, an actual system is imple-
mented. The specifications, which describe what a designer
wishes the implementation to satisfy, are generally written in
a style that is unambiguous yet easy to read. On the other
hand, the implementation, which describe software and
hardware which embody the specifications, is written in a
style which permits the details of how a sofiware and
hardware component will solve a given problem.

Verification means the analysis of the implementation to
determine whether all parts of the specifications are satisfied
by the implementation. Verification is vital in building an
error-free system according to the designer’s intents.

During development of system hardware or software, it is
desirable to determine whether the implementation meets all
parts of the specifications. Verification during development
significantly enhances system reliability and eliminates the
need for backtrack processes during development.

The implementation that satisfies all the conditions
expressed in the specification is said to satisfy the specifi-
cation. As a system becomes larger and more complicated,
it is very important, during system development, to ensure
that the specification is satisfied.

There are several description formats for the specification,
and the designer uses one of the formats depending upon the
types of conditions to be verified. For asynchronous systems
such as communication protocols, a specification format in
which conditions are represented based on the timing of
events is desirable. A specification description language for
this purpose, such as temporal logic, is available. For
synchronous systems containing many hardware units, it is
desirable that specifications express conditions concerning
functionality in terms of the relationship between the input
and output of hardware and software components. The
present invention relates to the latter type of input-output
correctness verification.

There is a method for verifying the output correctness of
an implementation with respect to a specification. In this
method, both the implementation and the specification are
translated to finite state machine (FSM) representations
(hereafter called FSM) and then these two FSM represen-
tations are compared. The FSM representation eliminates
syntactic differences (such as variable names) between the
specification and the implementation, and provides a com-
mon representation of the semantic content of the specifi-
cation and the implementation, facilitating comparison.

The FSM itself can be represented using boolean expres-
sions. Since the FSMs are often very large, the boolean
expressions can in turn be represented using binary decision
diagrams (BDDs).

Not only are BDDs able to represent the internal contents
of FSMs, but a set of algorithms exist which allow fast
processing of large boolean expressions.

15

20

25

30

40

45

50

55

60

65

2

To make the comparison of two FSMs meaningful, it is
usually assumed that both FSMs accept the same set of
possible input values.

When two FSMs are compared, it is required that, in each
FSM state, both machines will generate the same outputs for
identical inputs. The two machines start in their respective
initial states. That is, the current state of each machine is
assumed to be the initial state. And, for the current state, a
check is made to ensure that the corresponding outputs of the
two machines are identical for all possible input values. This
process is repeated for all the possible states. When the
check is made for all the possible states, the identity of two
FSMs can be determined.

Using a BDD based comparison of FSMs results in
extremely short computer execution time. However, the
BDD representation used in this method has limited expres-
siveness, and unable to take direct advantage of patterns in
the state space. This means that the compactness of BDD
representation depends on the ability to find patterns in the
boolean expressions. In addition, the efficiency of BDD
representations are largely affected by the order of the
variables occurring in the boolean expressions, yet it is
extremely difficult to determine the order of variables.
Because of this, it is difficult to do effective verification in
the existing FSM based method.

Another drawback of existing FSM based verification
methods is that only strictly finite state machines can be
compared. In the verification of an actual system, it is often
desirable to work with parameterized specifications and
implementation descriptions. In that case, however, existing
methods are not efficient because some elements of the
system are left as unspecified variables. For example, when
comparing a stack implementation description against a
stack specification, the details of the stack contents are left
as unspecified parameters. Existing methods do not handle
this case.

In view of the foregoing, it is the main object of the
present invention to provide a method to solve the problem
of the prior art. More specifically, it is an object of this
invention to provide a method whereby verification is per-
formed with parameterized logic programs and to provide an
efficient logic program comparison method.

SUMMARY OF THE INVENTION

The present invention has the following effects: Two logic
programs entered by the input step are converted to the first
and second FSM descriptions by a converting step. The
converting step determines the data types of each program,
converts each program to the completed form, expands the
procedure calls in each program to procedure bodies, per-
mutes the resulting procedure dies based on the variable
order, and replaces each representation in the program by a
unique code. Thus, canonical FSMs which are suitable for
verification may be obtained, making comparison between
FSMs easy. Then, the comparison step determines whether
there exists an equivalence between enumerated states,
between input values, and between output values, and deter-
mines whether the descriptions produce respective output
values deemed equal for all respective inputs deemed equal
for all respective states deemed equal, and outputs the result
of the comparison. Thus, the equality relation need not be
strict equality but need only satisfy a given relation, making
it possible to verify parameterized logic programs.

According to the invention the converted contents to be
compared are restricted to generic queries, making the
comparison more efficient.



